APPENDIX G

Force Equilibrium: A Vectorial Approach

In this Appendix, we shall illustrate how force and moment equilibrium problems (such as Sample Problem 2.5) can be solved via a vectorial approach.

G. 1 Vectors: A Review

Quantities such as positions, forces, and moments may be represented as vectors, and are denoted here by bold characters such as $\mathbf{p}, \mathbf{F}, \mathbf{M}$. For example, in Figure G.1, $\mathbf{p}=0 \hat{i}+4 \hat{j}+3 \hat{k}$ is a position vector that lies on the $y z$ plane, and $(\hat{i}, \hat{j}, \hat{k})$ represent the three coordinate axes; equivalently the vector $\mathbf{p}=0 \hat{i}+4 \hat{j}+3 \hat{k}$ may be captured in a tuple format as $p=(0,4,3)$.

Given any vector $\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)$, its magnitude is defined to be:

$$
\begin{equation*}
\|\mathbf{p}\|=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}} \tag{G.1}
\end{equation*}
$$

and its direction is the unit vector:

$$
\begin{equation*}
\hat{\mathbf{p}}=\frac{\mathbf{p}}{\|\mathbf{p}\|} \tag{G.2}
\end{equation*}
$$

For example, the magnitude of vector $\mathbf{p}=(0,4,3)$ is $\|\mathbf{p}\|=\sqrt{0+16+9}=5$ while its direction is given by $\hat{\mathbf{p}}=(0,4,3) / 5$, i.e., $\hat{\mathbf{p}}=(0,0.8,0.6)$. Also observe from Equation (G.2) that, given a magnitude $\|\mathbf{p}\|$ and a direction $\hat{\mathbf{p}}$, the corresponding vector is given by:

$$
\begin{equation*}
\mathbf{p}=\|\mathbf{p}\| \hat{\mathbf{p}} \tag{G.3}
\end{equation*}
$$

For example, suppose the magnitude of a vector is 3 and its direction is the unit vector $(0,-0.6,0.8)$, then the corresponding vector is $\mathbf{p}=3(0,-0.6,0.8)=(0,-1.8,2.4)$

Given any two vectors \mathbf{p} and \mathbf{q}, we define their sum as:

$$
\begin{equation*}
\mathbf{p}+\mathbf{q}=\left(p_{x}+q_{x}, p_{y}+q_{y}, p_{z}+q_{z}\right) \tag{G.4}
\end{equation*}
$$

Further, their dot-product (resulting in a scalar quantity) is defined as:

$$
\begin{equation*}
\mathbf{p} \cdot \mathbf{q}=p_{x} q_{x}+p_{y} q_{y}+p_{z} q_{z} \tag{G.5}
\end{equation*}
$$

The dot-product is particularly useful in finding the component of a vector along a given direction. For example, the component of $\mathbf{p}=(0,4,3)$ along the unit direction $\hat{\mathbf{d}}=(0,0.8,0.6)$ is given by $\mathbf{p} \cdot \hat{\mathbf{d}}=5.0$

Finally, the cross-product of two vectors \mathbf{p} and \mathbf{q} (resulting in a vector quantity) is defined via a determinant as follows:

$$
\mathbf{p} \otimes \mathbf{q}=\operatorname{det}\left[\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \tag{G.6}\\
p_{x} & p_{y} & p_{z} \\
q_{x} & q_{y} & q_{z}
\end{array}\right]
$$

Evaluating the determinant, we have:

$$
\begin{equation*}
\mathbf{p} \otimes \mathbf{q}=\left(p_{y} q_{z}-q_{y} p_{z}\right) \hat{i}+\left(p_{z} q_{x}-q_{z} p_{x}\right) \hat{j}+\left(p_{x} q_{y}-q_{x} p_{y}\right) \hat{k} \tag{G.7}
\end{equation*}
$$

i.e., in a tuple notation:

$$
\begin{equation*}
\mathbf{p} \otimes \mathbf{q}=\left(\left(p_{y} q_{z}-q_{y} p_{z}\right),\left(p_{z} q_{x}-q_{z} p_{x}\right),\left(p_{x} q_{y}-q_{x} p_{y}\right)\right) \tag{G.8}
\end{equation*}
$$

The cross-product is particularly useful for computing moments due to external forces, as explained in the next section.

G. 2 Force and Moments Equilibrium

Consider the illustration in Figure G. $2 a$ where an external force acts at one end of the member as shown. In the coordinate system illustrated, the force may be represented by the vector $\mathbf{F}_{\text {ext }}=F(0,0,-1)=(0,0,-\mathrm{F})$, where F is the magnitude of the force.

Figure G. 2 b illustrates a free-body-diagram taken at the cross-section $A A$. In Sample Problem 2.5, the free-body diagram was analyzed through visual inspection, and the reaction forces, moments and torque at this cross-section were determined (as shown). The objective in this Appendix is to confirm these results via a vectorial approach. The motivation behind the vectorial approach is that, for more complex problems where multiple forces are involved, visual inspection can be error-prone, whereas the vectorial approach is simple and reliable.

(b)

Figure G. 2
Force acting on a member, and free-body diagram.

The vectorial approach for determining reaction forces, moments, etc. is as follows:

1. The first step is to identify all the external forces and moments. In this example, the external force is $\mathbf{F}_{\text {ext }}=(0,0,-\mathrm{F})$, while there are no external moments, i.e., $\mathbf{M}_{\text {ext }}=(0,0,0)$.
2. Next, we assign two unknown internal reaction vectors $\mathbf{F}_{\text {int }}$ and $\mathbf{M}_{\text {int }}$ at the cross-section of interest; $\mathbf{F}_{\text {int }}$ is the unknown reaction force vector, and $\mathbf{M}_{\text {int }}$ is the unknown generalized moment vector. The meaning of the generalized moment is discussed shortly. The objective is to find $\mathbf{F}_{\text {int }}$ and $\mathbf{M}_{\text {int }}$.
3. In the third step, we create a vector \mathbf{d} from the center of the cross-section of interest, to the point of force application, as illustrated in Figure G.2b. Observe, from the dimensions marked in Figure G. $2 a$, that $\mathbf{d}=b \hat{i}+a \hat{j}=(b, a, 0)$.
4. Finally, we enforce the following two equilibrium equations that a free-body must satisfy:

$$
\begin{gather*}
\text { Force equilibrium: } \mathbf{F}_{\mathrm{ext}}+\mathbf{F}_{\mathrm{int}}=\mathbf{0} \tag{G.9}\\
\text { Moment equilibrium: } \mathbf{d} \otimes \mathbf{F}_{\mathrm{ext}}+\mathbf{M}_{\mathrm{ext}}+\mathbf{M}_{\mathrm{int}}=\mathbf{0} \tag{G.10}
\end{gather*}
$$

From the force equilibrium equation, we have:

$$
\begin{equation*}
\mathbf{F}_{\mathrm{int}}=-\mathbf{F}_{\mathrm{ext}}=-(0,0,-F)=(0,0, F) \tag{G.11}
\end{equation*}
$$

In other words, the reaction force is the shear force acting in the positive z-direction as confirmed in Figure G.2b.

From the moment equilibrium equation, since there is no external moment, we have:

$$
\begin{equation*}
\mathbf{M}_{\mathrm{int}}=-\mathbf{d} \otimes \mathbf{F}_{\mathrm{ext}} \tag{G.12}
\end{equation*}
$$

Since $\mathbf{F}_{\text {ext }}=(0,0,-F)$, and $\mathbf{d}=(b, a, 0)$, from Equation (G.10) and Equation (G.6)

$$
\mathbf{M}_{\mathrm{int}}=-\operatorname{det}\left[\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \tag{G.13}\\
b & a & 0 \\
0 & 0 & -F
\end{array}\right]
$$

i.e., $\mathbf{M}_{\text {int }}=(a F,-b F, 0)$. In other words, the x-component of the generalized moment is $a F$; this is interpreted as a bending moment in Figure G.2b. The y-component of the generalized moment is $-b F$; this is interpreted as a torque in Figure G. 2 b (in the negative y-direction). There is no z-component of the moment.

To illustrate the generality of the vectorial approach, consider the illustration in Figure G.3, where an additional force $2 F$ acts in the positive x-direction as illustrated. The objective once again is to find the internal/reaction forces $\mathbf{F}_{\text {int }}$ and moment $\mathbf{M}_{\text {int }}$ at cross-section AA.

Observe that the external force is now given by $\mathbf{F}_{\text {ext }}=(2 F, 0,-F)$, while $\mathbf{d}=(b, a, 0)$ as before, and there are no external moments. From the force equilibrium equation, we have:

$$
\begin{equation*}
\mathbf{F}_{\mathrm{int}}=-\boldsymbol{F}_{\mathrm{ext}}=(-2 F, 0, F) \tag{G.14}
\end{equation*}
$$

i.e., there are two shear components at cross-section $A A$. On the other hand, the internal moment vector is given by $\mathbf{M}_{\text {int }}=-(b, a, 0) \otimes(2 F, 0,-F)$, i.e., $\mathbf{M}_{\text {int }}=(a F,-b F$, $2 a F)$. In other words, there is an additional reaction moment of $M_{z}=2 a F$ at the cross-section.

Figure G. 3
Forces acting on a member, and free-body diagram.

